## **140.** Infrared Absorption of Substituents in Heteroaromatic Systems. Part IV.<sup>1</sup> Ethyl N-Arylurethanes.

By A. R. KATRITZKY and R. A. JONES.

The absorption caused by the group  $\cdot$ NH·CO<sub>2</sub>Et for 15 compounds is recorded. Tentative assignments are suggested for most of the characteristic bands and the variations of the intensity and position of these bands are discussed.

EARLIER papers have discussed the absorption characteristic of simple esters <sup>2</sup> and amides; <sup>3</sup> it was thought of interest to extend this work to urethanes, which combine the structural features of esters and amides, and to determine whether the regularities previously found <sup>2,3</sup> held for the more complicated class of compound. The infrared spectra of fifteen ethyl *N*-arylurethanes (Ar·NH·CO<sub>2</sub>Et) were therefore measured in 0.189M-solutions in purified chloroform in a 0.106 mm. cell. Almost all the bands were characteristic either of the ring or of the •NH·CO<sub>2</sub>Et group; the positions of the latter are recorded in Table 1 together with apparent extinction coefficients (for the errors and approximations involved therein see ref. 2).

The 3500—3100 cm.<sup>-1</sup> Region.—All the compounds show the non-bonded NH stretching frequency at 3430—3390 [3410  $\pm$  10] \* cm.<sup>-1</sup> (Table 1, col. 1); the intensity is (50—100) [(75  $\pm$  15)] \* except for compounds in which the •NH•CO<sub>2</sub>Et is attached to the 2-position of a pyridine or pyridine 1-oxide ring (Nos. 10—13). The last two classes of compound



show quite strong (50—70) bands respectively at 3180-3170 and 3290-3270 cm.<sup>-1</sup> (col. 2) which are assigned to H-bonded NH stretching modes; the 2-substituted oxides are probably intramolecularly bonded (I) and the 2-substituted pyridines may exist as dimers †

\* Parentheses signify apparent molecular extinction coefficients, and square brackets indicate arithmetical means and standard deviations.

† For 2-substituted pyridines, the  $\epsilon_A$  of the band assigned to the non-bonded NH group decreased  $(70\rightarrow 50\rightarrow 40)$  and the  $\epsilon_A$  of the band assigned to the hydrogen-bonded NH group increased  $(30\rightarrow 45\rightarrow 60)$  as the solution concentration increased  $(0.05\rightarrow 0.1\rightarrow 0.2M)$ . Molecular weight determinations indicated some association.

- <sup>1</sup> Part III, Katritzky and R. A. Jones, J., 1959, 3674.
- <sup>2</sup> Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
- <sup>3</sup> Katritzky and R. A. Jones, J., 1959, 2067.

| TABLE 1.                      |                                                 |                                  |                      |              |                            |            |                    |                       |                |                                   |  |
|-------------------------------|-------------------------------------------------|----------------------------------|----------------------|--------------|----------------------------|------------|--------------------|-----------------------|----------------|-----------------------------------|--|
|                               |                                                 | 1                                | 2                    |              |                            | 3          |                    |                       | 4              |                                   |  |
|                               |                                                 | <u> </u>                         | νNH                  |              |                            |            |                    |                       |                |                                   |  |
| No                            | Dedical 4                                       | Free                             |                      | H            | bonded                     |            | vC=O               |                       | A              | mide II                           |  |
| 10.                           | C <sub>4</sub> H <sub>4</sub> ·NMe <sub>6</sub> | cm1<br>3430                      | ε <sub>A</sub><br>85 | cm           | • ε <u>λ</u><br>• 10       | cm.<br>171 | -i<br>0, /         | ε <sub>Α</sub><br>190 | cm             | ε <sub>Α</sub><br>500             |  |
| $\overline{\mathbf{\hat{2}}}$ | C <sub>6</sub> H <sub>4</sub> ·OMe              | 3420                             | 65                   | 3330         | * 15                       | 172        | 3 4                | 120                   | 1516           | 500                               |  |
| 3                             | C <sub>6</sub> H <sub>4</sub> Me                | 3410                             | 65                   | 3330         | * 10                       | 172        | 54                 | 100                   | 1524           | 380                               |  |
| 4                             | C <sub>6</sub> H <sub>4</sub> Cl                | 3420                             | 85                   | 3330         | * 15                       | 172        | 6 4                | 120                   | 1517           | 480                               |  |
| 0<br>6                        | Pn                                              | 3410                             | 75                   | 3315         | 15                         | 173        | 0 4                | 140                   | 1525           | 420                               |  |
| 7                             | $C_{6}H_{4} \cdot O_{2}Me$                      | 3400                             | 100                  | 3330         | * 25                       | 173        | 6 4                | 10                    | 1524           | 420                               |  |
| 8                             | 4Py                                             | 3410                             | 50                   | 0000         |                            | 173        | 3 3                | <b>360</b>            | 1512           | 340                               |  |
| 9                             | 3Py                                             | 3410                             | 70                   |              |                            | 172        | 8 3                | 390 {                 | 1545           | * 130                             |  |
| 10                            | 977**                                           | 2400                             | 40                   | 9100         | 50                         | 159        |                    |                       | 1525           | * 230                             |  |
| 10                            | 2F y                                            | 3400                             | 40                   | <b>9</b> 190 | 50                         | 172        | 4 4                | 120 {                 | 1517           | 290                               |  |
| 11                            | 2 Py(5 Me)                                      | 3390                             | 35                   | <b>31</b> 70 | 50                         | 172        | 2 4                | 160 {                 | $1540 \\ 1517$ | * 280<br>360                      |  |
| 12                            | 2PyO                                            | 3410                             | 15                   | 3290         | 70                         | 173        | 7 3                | 890                   | 1518           | 420                               |  |
| 13                            | 2PyO(5Me)                                       | 3380 *                           | 10                   | 3270         | 65                         | 1730       | 0 3<br>4 9         | 80                    | 1531           | 480                               |  |
| 15                            | $2-C_{10}H_{\pi}$                               | 3390                             | 60                   | 3320         | * 15                       | 172        | ± 3                | 190<br>180            | 1533           | 300                               |  |
|                               | 107                                             |                                  |                      | 0020         | -0                         | 1.1        |                    | .00                   | 1000           | 010                               |  |
|                               | 5                                               | 6                                | 7                    |              | 0                          |            | h                  | 10                    |                | 11                                |  |
|                               | 5                                               | Etl                              | ıyl                  |              | 0                          | :          | J                  | 10                    |                | 11                                |  |
|                               | СН                                              | CH Asym                          | CH ST                |              |                            | r          |                    |                       |                |                                   |  |
|                               | scissor                                         | bend.                            | bend                 | ·            | CH. Wag                    |            |                    |                       | <u>;-0</u>     |                                   |  |
| No.                           | cm. <sup>-1</sup> $\epsilon_A$                  | cm. <sup>-1</sup> $\epsilon_{A}$ | cm1                  | ε            | cm1 ε                      | ₄ cm1      | $\epsilon_{\rm A}$ | cm1                   | εΑ             | cm. <sup>-1</sup> $\varepsilon_A$ |  |
| 1                             | 1482 § 135                                      | ()                               | 1388 *               | 50           | 1369 5                     | 55 1331    | * 115              | 1319                  | 220            | (CHCl <sub>3</sub> )              |  |
| 2                             | ()                                              | ()                               | 1390                 | 60           | 1380 * 5                   | 5 1331     | * 75               | 1297                  | 165            | 1242 ‡ 300                        |  |
| 3                             | ()<br>1467 * 50                                 | 1448 * 65<br>1447 = 40           | 1391 *               | 70<br>05     | 1383 * 5                   | 55 1330    | * 70               | 1314                  | 190            | 1247 105                          |  |
| 4                             | 1407 . 50                                       | 1447 40                          | 1991 -               | 95           | 1383 * 4                   | 0 1325     | * 120              | 1304                  | 240            | 1250 160                          |  |
| 5                             | 1484 65                                         | ()                               | 1393                 | $45$ {       | 1371 * 2                   | 5          | 10                 | 1012                  | 200            | 1200 100                          |  |
| 6                             | 1480 60                                         | ()                               | 1390 *               | 55           | 1369 * 4                   | -5 -       |                    | 1310                  | <b>280</b>     | 1263 * 160                        |  |
| 7                             | ()                                              | 1447 45                          | 1392                 | 65           | 1374 8                     | 85 (-      | -)                 | 1305                  | 370            | 1266 100                          |  |
| 8                             | 1475 * 50                                       | 1448 <b>3</b> 5                  | 1392                 | <b>45</b>    | 1368 5                     | - 0        | - {                | 1334                  | 230            | 1242 420                          |  |
| 0                             | ( )                                             | 1447 95                          | 1900                 | 105          | 1380 3                     | 0 1040     | 25                 | 1330                  | 115            | 1045 010                          |  |
| 9                             | ()                                              | 1447 35                          | 1392                 | <b>4</b> 0 { | 1368 2                     | 5 1345     | 25{                | 1300                  | 75             | 1245 310                          |  |
| 10                            | ()                                              | ()                               | 1390                 | <b>45</b>    | 1367 5                     | 0 1326     | 45                 | 1308                  | 320            | 1257 230                          |  |
| 11                            | 1486 + 105                                      | 1449 * 75                        | 1204                 | 75           | 1369 * 7                   | 0 1327     | <b>*</b> 60        | 1307                  | 360            | 1253 350<br>1255 + 550            |  |
| 12                            |                                                 | 1450 * 140                       | ()                   | 75           |                            | 1325       | -<br>* 50          | 1304                  | 105            | $1255 \pm 550$<br>$1254 \pm 500$  |  |
| $\overline{14}$               | ·/                                              | 1446 65                          | 1395 *               | 55           | 1378 6                     | 0 1347     | 130                | 1328                  | 85             | 1256 + 85                         |  |
| 15                            | ()                                              | (—)                              | 1389                 | 70           | 1367 12                    | 5 1357     | 140                | 1318                  | 65             | 1257 105                          |  |
|                               |                                                 |                                  |                      |              |                            |            |                    |                       |                |                                   |  |
|                               | 12                                              | 13                               |                      | 14           |                            | 12         |                    | 13                    |                | 14                                |  |
|                               |                                                 | CO·O                             |                      |              |                            |            |                    | CO.O                  |                |                                   |  |
| No                            | cm -1 e                                         | cm -1                            | . cm -1              |              | No                         | cm -1      | £. 0               |                       | £.             | cm -1 -                           |  |
| 1                             | 1192 * 150                                      | 1095 9                           | 0 1066               | 260          | 8                          | 1198       | 370                | 1095                  | 85             | 1060 180                          |  |
| $\hat{2}$                     | ()                                              | 1094 8                           | 5 1065               | 240          | 9                          | 1190 *     | 110                | 1094                  | 70             | 1069 230                          |  |
| 3                             | $1198$ $^{\prime}$ $135$                        | 1093 7                           | 5 1063               | 260          | 10                         | (CHCl      | a)                 | 1104                  | 130            | 1069 240                          |  |
| 4                             | 1199 140                                        | 1092 ‡ 27                        | 0 1061               | 260          | 11                         | 1196       | 190                | 1093 *                | 95             | 1069 320                          |  |
| 5                             | () {                                            | 1095 98                          | 5 106 <b>3</b>       | 280          | 12                         | 1165       | 210                | 1096                  | 75<br>65       | 1064 200                          |  |
| 6                             | 1191 210                                        | 1096 * 144                       | 5 1060               | 240          | 13                         | 1180       | 80                 | 1108                  | 135            | 1001 240<br>1072 115              |  |
| 7                             | 1196 185                                        | 1095 110                         | 1060                 | 280          | $\overline{1}\overline{5}$ | 1184 *     | 75                 | 1093                  | 75             | 1060 260                          |  |

\* Shoulder. § Intensity increased owing to overlap of absorption bands. ‡ Absorption con-sidered to be the superimposition of two peaks. — Absence of absorption. (—) Band masked by stronger absorption. (CHCl<sub>3</sub>) Band masked by solvent. † Py substituted pyridine, Py(5Me) 5-methyl disubstituted pyridine, PyO substituted pyridine I-oxide, PyO(5Me) 5-methyl disubstituted pyridine I-oxide; the position of the substituent is indicated by a numeral.

(II). The other compounds often show a shoulder or weak band at 3330-3300 cm.<sup>-1</sup> presumably due to intermolecular hydrogen bonds.

Under similar conditions acylamino-compounds showed the NH stretching band at  $[3420 \pm 10 \text{ cm}.^{-1} (40 \pm 5)].^3$  In a Nujol mull, the band for Ph·NH·CO<sub>2</sub>Et was reported <sup>4</sup> at 3290 cm.<sup>-1</sup>.

The Carbonyl Stretching Frequency (col. 3).-This mode causes absorption at 1739-1719 cm.<sup>-1</sup> (360–460) [( $405 \pm 25$ )]. As in other N-arylamides,<sup>3</sup> electron-attracting rings should lead to increased importance of canonical forms of type (III) and thus to less contribution from forms (IV) and to higher C=O frequencies. para-Substituents in a phenyl group do raise (NO<sub>2</sub>) or lower (Cl, Me, OMe, NH<sub>2</sub>) the position according to their electrondonor ability. The naphthalene rings appear to have electron-acceptor ability in the order  $Ph > 2-C_{10}H_7 > 1-C_{10}H_7$ , in agreement with chemical evidence. Of the heterocyclic compounds, the 4-pyridyl ring raises the frequency whilst the position of the band for the 3-pyridyl compound varies little from that for the phenyl compound. The relatively low positions of the 2-substituted heterocycles are possibly connected with the hydrogen bonding (I, II). Previous workers have found the C=O stretching band near  $1700 \text{ cm}^{-1}$  in the solid state and  $1735 \text{ cm}^{-1}$  for chloroform solutions,<sup>5</sup> at 1722—1705 cm<sup>-1</sup> (N-alkylcarbamates),<sup>6</sup> and at 1728-1690 cm.<sup>-1</sup> (various Ph·NH·CO<sub>2</sub>R).<sup>7</sup>

The "Amide II" Band (col. 4).-This occurs at 1533-1512 cm.-1 (290-500)  $[1521 \pm 7 \text{ cm}^{-1} (400 \pm 70)]$ ; it was found for •NH•COMe and •NH•COPh compounds at  $[1513 + 7 \text{ cm}^{-1} (310 + 100)]$ <sup>3</sup> This band had been previously reported near 1530 cm<sup>-1</sup> in various compounds of type R·NH·CO<sub>2</sub>R'.<sup>4,5,7</sup>

The 1500-1350 cm.<sup>-1</sup> Region.-The four expected CH deformation modes of the ethyl group occur at:

> CH<sub>3</sub> sym bend 1393–1389 [1391  $\pm$  2] cm.<sup>-1</sup> (40–70) [(55  $\pm$  13)] 1380–1367  $[1372 \pm 5]$  cm.<sup>-1</sup> (50–125)  $[(70 \pm 30)]$ CH, wag

These positions are near those found for the corresponding modes in ethyl esters<sup>2</sup> and ethers:<sup>8</sup> the intensities of the first three bands are somewhat higher, and those of the CH<sub>2</sub>, wagging somewhat lower than those found in other ethyl esters.<sup>2</sup>

The 1350-1240 cm.<sup>-1</sup> Region.-In general a band or shoulder is found at 1357-1324 cm.<sup>-1</sup>. All the compounds absorb at 1334–1297  $[1313 \pm 10]$  and 1266–1242 [1253 + 7] cm.<sup>-1</sup>; these bands are of variable intensity (65-370) [(205 + 95)] and (85-420)  $\left[(200 + 115)\right]$  but there is no obvious relation between intensity and the nature of the ring. This absorption is assigned to C·N·C·O skeletal modes; corresponding modes of esters and amides also absorb in this region.

The 1200-1050 cm.<sup>-1</sup> Region.—Three bands are shown (cols. 12-14): 1198-1161 cm.<sup>-1</sup> (80–370) [1190  $\pm$  18 cm.<sup>-1</sup> (190  $\pm$  80)]; 1108–1092 cm.<sup>-1</sup> (65–135) [1096  $\pm$  5 cm.<sup>-1</sup>  $(90 \pm 25)$ ]; and 1072–1060 cm.<sup>-1</sup> (200–320) [1064 ± 4 cm.<sup>-1</sup> (250 ± 35)] {except that} the intensity of the third band is lower (115) in No. 15}. The bands probably correspond to skeletal modes of the •CO•O• group.<sup>2,9</sup>

Other Bands.—Nearly all the other bands with  $\varepsilon_A > 10$  could be assigned to the ring or second substituent.<sup>+</sup> Those for most of the heterocyclic compounds have been

- <sup>5</sup> Thompson, Nicholson, and Short, Discuss. Faraday Soc., 1950, 9, 229.
  <sup>6</sup> Pinchas and Ben-Ishai, J. Amer. Chem. Soc., 1957, 79, 4099.
  <sup>7</sup> Hayes, Thomson, and Flett, Experientia, 1955, 11, 61.

- <sup>8</sup> Katritzky and Coats, J., 1959, 2062.
- <sup>9</sup> Katritzky and his co-workers, unpublished work.

 $<sup>\</sup>pm$  Exceptions: Bands at 1468 (40), 1415 (30) and 824 cm.<sup>-1</sup> (25) for No. 5 and at 1785 (25) and 1008 cm.<sup>-1</sup> (25) for No. 12.

<sup>&</sup>lt;sup>4</sup> Barr and Haszeldine, J., 1956, 3428.

published.<sup>10</sup> Nuclear bands for the *para*-disubstituted benzenes are given in Table 2; for each compound the positions and intensities agree reasonably with those of compounds carrying substituents of similar types (•NH•CO<sub>2</sub>Et behaving as an electron donor <sup>11</sup>). except that the bands at ca. 1590 and 1415 cm.<sup>-1</sup> (Table 2, cols, 2 and 4) are stronger than

| Substit.<br>X                                                                | tit. $\begin{array}{c} 1\\ \nu CC\\ A_1 - A_g\\ cm.^{-1} & \varepsilon_A \end{array}$ |                                | $\begin{array}{c} 2\\ \nu \text{CC}\\ B_1-B_{3g}\\ \text{cm.}^{-1}  \epsilon_{\text{A}} \end{array}$ |                                                                                       | $\begin{array}{c}3\\\nu \text{CC}\\A_1-B_{1u}\\\text{cm.}^{-1}&\epsilon_A\end{array}$      |                                  | $\begin{array}{c} 4\\ \nu \text{CC}\\ B_1 - B_{2u}\\ \text{cm.}^{-1} & \epsilon_A \end{array}$ |                                                                                                             | $\begin{array}{c} 5\\ \beta CH\\ B_1-B_{3g}\\ cm.^{-1} & \epsilon_A \end{array}$ |                                                                                     |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| NMe <sub>2</sub>                                                             | 1617                                                                                  | 60                             | 1589                                                                                                 | 90                                                                                    | ()                                                                                         | - {                              | $1423 \\ 1412$                                                                                 | 90<br>80                                                                                                    | 1305 *                                                                           | 140                                                                                 |
| OMe<br>Me<br>Cl<br>CO <sub>2</sub> Me<br>NO <sub>2</sub>                     | 1615 *<br>1615<br>1615 *<br>1607<br>1612 *                                            | $35 \\ 60 \\ 35 \\ 270 \\ 240$ | $1597 \\ 1598 \\ 1594 \\ 1592 \\ 1602$                                                               | 80<br>125<br>160<br>190<br>320                                                        | ()<br>()<br>1496<br>1507 *<br>()                                                           | 270<br>230                       | $1416 \\ 1409 \\ 1405 \\ 1413 \\ 1415$                                                         | $     \begin{array}{r}       135 \\       115 \\       200 \\       260 \\       210 \\       \end{array} $ | ()<br>1295 *<br>1284<br>()<br>()                                                 | 90<br>75                                                                            |
|                                                                              |                                                                                       |                                | $ \begin{matrix} 6 \\ \beta CH \\ A_1 - A_g \end{matrix} $                                           |                                                                                       | $\begin{array}{c} 7\\ \beta \mathrm{CH}\\ B_1-B_{2u} \end{array}$                          |                                  | 8<br>βCH<br>Α <sub>1</sub> -Β <sub>1</sub> μ                                                   |                                                                                                             | 9<br>γCH<br>B2-B34                                                               |                                                                                     |
| Su<br>NMe <sub>2</sub><br>OMe<br>Me<br>CO <sub>2</sub> Me<br>NO <sub>2</sub> | ıbstit. X                                                                             |                                | cm. <sup>-1</sup><br>1164 ‡<br>1177<br>1174 *<br>1175<br>1174<br>1178                                | $egin{array}{c} \epsilon_{\rm A} \\ 180 \\ 185 \\ 50 \\ 90 \\ 400 \\ 310 \end{array}$ | $\begin{array}{c} \text{cm.}^{-1} \\ () \\ 1110 \\ 1120 \\ 1115 \\ () \\ 1113 \end{array}$ | $e_{A}$<br>30<br>40<br>65<br>190 | cm. <sup>-1</sup><br>1007<br>1012 *<br>1018<br>1010<br>1014<br>1005                            | ε <sub>A</sub><br>15<br>45<br>30<br>95<br>50<br>25                                                          | cm. <sup>-1</sup><br>816<br>828<br>810<br>824<br>850<br>849                      | $egin{array}{c} {f \epsilon_A} \\ 135 \\ 150 \\ 80 \\ 160 \\ 55 \\ 220 \end{array}$ |

TABLE 2. Nuclear bands of para-disubstituted benzenes, X·C<sub>6</sub>H<sub>4</sub>·NH·CO<sub>2</sub>Et.

For significance of column headings see ref. 11.

usual; this appears to be a specific effect of the ·NH·CO<sub>2</sub>Et group. Bands corresponding to the substituents NMe<sub>2</sub> {2790 (50), 1447 (95), 1348 \* (100), (-), 1164  $\ddagger$  (180), 1133 (85), (-), 944 (75)}, OMe {2840 (25), 1467 (105), 1445 (80), (-), 1242  $\ddagger$  (300), 1033 (190)}, and CO<sub>2</sub>Me {1709 (500), 1437 (175), -, 1280 (600), (CHCl<sub>3</sub>), 1112 (300), (-), 964 (30)} agree with previous work.<sup>1,2,8</sup>

Experimental.—Compounds were prepared by standard methods and recrystallised before measurement; m. p. agreed with values in the literature. The spectra were measured on a Perkin–Elmer 21 spectrophotometer with the settings previously given.<sup>2</sup>

This work was carried out during the tenure (by R. A. J.) of a D.S.I.R. grant.

THE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, July 22nd, 1959.]

Katritzky and his co-workers, J., 1958, pp. 2192, 2195, 2198, 2202, 3165, 4155.
 Katritzky and Simmons, J., 1959, 2051.